Arabische liebe chat dating sites

html head meta http equiv content type text charset ISO 8859 1 title Google style body td a p h font family arial sans serif size 20px color 3366cc q 00c script function sf document f focus bgcolor ffffff 000000 link 0000cc vlink 551a8b alink ff0000 onload if images new Image src nav logo2 png topmargin 3 marginheight center div align right nowrap padding bottom 4px width 100 href url sa pref ig pval www de 3Fhl 3Dde usg Z0CJb WM4Hl Sg Uf Avcq REfrp5hx E Diese Seite personalisieren nbsp https com accounts Login continue hl Anmelden img alt height 110 intl logo gif 301 br form action search name defer table border 0 cellspacing cellpadding 4 tr b Web class imghp ie oe tab wi Bilder groups grphp wg news nwshp wn froogle frghp wf options Mehr raquo valign top 25 input hidden value maxlength 2048 55 Suche btn G submit btn I Auf gut Gl??2 advanced Erweiterte preferences Einstellungen language tools Sprachtools colspan id all radio checked label for Das lgr lr lang Seiten Deutsch cty cr country DE aus Deutschland ads Werbung services Unternehmensangebote about ?

arabische liebe chat dating sites-32arabische liebe chat dating sites-31arabische liebe chat dating sites-68

006 12 29 Points 1316 Partenaires vivaocs target blanc baznas FWD V4 solid 000 safiweb hostma 00px 3px vertical love jiji bientot hichamtoldo skyblog blank siro tssalo mehdibono wesh houssam salam sarah slt tt monde lkhassar sqal 07 wlad asfi t9admo walah mdintkom wa3ra mais ntoma mhachrine m simo simoraymy mimo moi meryem safi c est mon msn mailto soso 2005 mousi9a net hicham toldo ach hadak chi sadi9 dyalach site adrianhicham 3l makshof tamo sba7 lkhayre sba7ato lilah manak miss kawtar salut yala9ina m3a ma7san mana ou tanatmana matab9awche tkhasro fi lhadra awlade khalti msa tupac saha hi everybody souma ha7na left Votre Message auteur maxlenght msg send Voir archives google 160 600 160x600 E1771E 006699 addv Ajouter Une addm addi Photo addt Telechargement addp Devenez partenaire Signaler bug erreur Contacter 250 Codage Design par Mohamed Yassine 0021274185715 N° 17 Bloc 62 Saida 46000 ligne 94 Total 65559 Corpyright Tous droits r?

Computational Linguistics in the Netherlands Journal 4 (2014) Submitted 06/2014; Published 12/2014 Gender Recognition on Dutch Tweets Hans van Halteren Nander Speerstra Radboud University Nijmegen, CLS, Linguistics Abstract In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus consisting of the full Tweet production (as far as present in the Twi NL data set) of 600 users (known to be human individuals) over 2011 and We experimented with several authorship profiling techniques and various recognition features, using Tweet text only, in order to determine how well they could distinguish between male and female authors of Tweets.

We achieved the best results, 95.5% correct assignment in a 5-fold cross-validation on our corpus, with Support Vector Regression on all token unigrams.

Two other machine learning systems, Linguistic Profiling and Ti MBL, come close to this result, at least when the input is first preprocessed with PCA. Introduction In the Netherlands, we have a rather unique resource in the form of the Twi NL data set: a daily updated collection that probably contains at least 30% of the Dutch public tweet production since 2011 (Tjong Kim Sang and van den Bosch 2013).

However, as any collection that is harvested automatically, its usability is reduced by a lack of reliable metadata.

In this case, the Twitter profiles of the authors are available, but these consist of freeform text rather than fixed information fields.And, obviously, it is unknown to which degree the information that is present is true.The resource would become even more useful if we could deduce complete and correct metadata from the various available information sources, such as the provided metadata, user relations, profile photos, and the text of the tweets.In this paper, we start modestly, by attempting to derive just the gender of the authors 1 automatically, purely on the basis of the content of their tweets, using author profiling techniques.For our experiment, we selected 600 authors for whom we were able to determine with a high degree of certainty a) that they were human individuals and b) what gender they were.We then experimented with several author profiling techniques, namely Support Vector Regression (as provided by LIBSVM; (Chang and Lin 2011)), Linguistic Profiling (LP; (van Halteren 2004)), and Ti MBL (Daelemans et al.

Tags: , ,